Wdh. AB-Endstufen

$$r_e \approx \frac{R_1}{2}$$

Der Widerstand R_1 kann durch eine Stromquelle ersetzt werden. Er ist zuständig für das Einstellen des Diodenstroms.

Beispiel:

$$\begin{split} r_e &= \frac{\Delta u_e}{\Delta i_e} = \frac{9V}{305 \mu A} \approx 29 k \Omega \\ &= r_{BE} + \beta \cdot \left(R_E + R_L \right) \xrightarrow{r_{BE} \ vernachl\"{assigen}} \beta \cdot \left(R_E + R_L \right) \\ &= 124 \cdot \left(22 \Omega + 220 \Omega \right) \approx 30 k \Omega \end{split}$$

Transistor als Konstantstromquelle:

Funktionsweise:

- R_1, R_2 stellen den Arbeitspunkt ein

$$\begin{split} U_{R2} &= U_{BE} + U_{RE} \ mit \ U_{RE} = I_E \cdot R_E \approx I_C \cdot R_E, \ I_C = \beta \cdot I_B \\ &\rightarrow U_{R2} = U_{BE} + \beta \cdot I_B \cdot R_E \end{split}$$

- I_C ist konstant (weil I_B konstant). Dabei kann der Widerstand R_L (in der Grundschaltung ist dies R_C) variiert werden

Prinzip der Stromquelle:

- Liefert immer einen Konstanten Strom, egal, wie stark sie belastet wird
- Beispiel:

$$R_{L} = 1\Omega \rightarrow U_{RL} = 9mV$$

$$R_{L} = 1M\Omega \rightarrow U_{RL} = 9000V$$

Zusammenhang zur Ausgangskennlinie:

- wenn $U_{CE} > U_{CEsat}$, ist I_C weitestgehend linear $U_B = U_{RC} + U_{CE} + U_{RC}$ $U_B = I_C \cdot R_L + U_{CE} + I_C \cdot R_E$
- es wird nur R_{L} variiert, dadurch verändert sich $U_{\it CE}$ zwischen $U_{\it CEsat}$ (großes R_{L}) und $U_{\it B}$ (kleines R_{L})
- bei maximalem R_L gilt:

$$U_{B} = I_{C} \cdot R_{L\text{max}} + U_{CEsat} + I_{C} \cdot R_{E}$$

$$\rightarrow R_{L\text{max}} = \frac{U_{B} - U_{CEsat} - I_{C} \cdot R_{E}}{I_{C}} = 389, 4\Omega \approx 390\Omega$$

Last an der Stromquelle (AB-Endstufe):

- Diode liegt parallel zu $r_{BE} + R_E$, daher hat ihr Widerstand Einfluss auf den Ersatzwiderstand der Parallelschaltung, die mit R_I gleichwertig ist

Ändern der Stromrichtung der Transistorstromquelle:

- man setzt, je nach gewünschter Stromrichtung entweder NPN oder PNP Transistoren ein
- der Strom durchfließt entweder zunächst die Stromquelle oder die Last
- PNP: Pluspol der Last an Stromquelle, erst Stromquelle dann Last
- NPN: Minuspol der Last an Stromquelle, erst Last dann Stromquelle
- die Transistoren, die in den Stromquellen in der Endstufe verwendet werden, müssen zu einander passende PNP und NPN Transistoren sein

Endstufenausbau (Reihenschaltung aus Endstufen):

- Vorteil: Es können wesentlich größere Ströme gefahren werden
- wird eine Stufe überhitzt, wird durch die Stromgegenkopplung der Stromfluss verringert
 - → die anderen Stufen übernehmen die zusätzliche Arbeit

Bi-Polar Transistor als Schalter

- z.B. zur Ansteuerungsfunktion eines IC
- zwei Zustände:
 - o 1. Sperrzustand → hochohmig
 - o 2. Durchlasszustand → niederohmig

Übersteuerter und nicht übersteuerter Betrieb:

- erhöht man I_B immer weiter, so erreicht man den Punkt, an dem $U_{BE} = U_{CE}$ und $U_{CB} = 0V$
- beide Transistordioden sind in Durchlassrichtung, wenn dieser Punkt überschritten wird und $U_{\it CB} < -0.6V$
 - ightharpoonup Transistor befindet sich im Sättigungszustand $ightharpoonup U_{\it CE} = U_{\it CEsat}$ (letzter möglicher Punkt, weniger geht nicht)
 - \rightarrow Bei Übersteuerungen gilt $I_C = \beta \cdot I_B$ nicht!!

Einschaltzeit verkürzen:

- man möchte schnell schalten → daher wird übersteuert mit hohem Basisstrom
- man möchte im Sättigungsbereich arbeiten $ightarrow U_{\it CE} = U_{\it CEsat}$
- Vorteile
 - o man ist schnell beim Einschalten
 - o man verliert weniger Verlustleistung

Übersteuerungsfaktor:

- gibt an, um welchen Faktor man den Wert von $I_{\scriptscriptstyle B}$ noch übersteuern kann, bevor der Transistor kaputt geht

Berechnungsbeispiel:

$$\beta = 100, I_C = 10mA \ gefordert, U_B = 10V$$

1. R_C festlegen:

$$R_{C}=rac{U_{B}}{I_{C}}=rac{10V}{10mA}=1k\Omega$$
 (unter Vernachlässigung von U_{CEsat})

2. I_R ermitteln:

$$I_B = \frac{I_C}{\beta} = \frac{10mA}{100} = 100\mu A$$
 (Dies ist das I_B an der Übersteuerungsgrenze, $U_{CB} = 0V$)

3. Grad der Übersteuerung festlegen

Der Grad der Übersteuerung wird durch den Übersteuerungsfaktor \ddot{u} angegeben

$$\ddot{u} = \frac{I_B^*}{I_B}$$

Dabei ist $I_{\scriptscriptstyle B}$ der Basisstrom, der sich aus der Rechnung $I_{\scriptscriptstyle B}=\frac{I_{\scriptscriptstyle C}}{\beta}$ ergibt. (Gerade noch nicht

übersteuerter Transistor)

 ${I_{\scriptscriptstyle B}}^*$ ist der um den Übersteuerungsfaktor ü größere Basisstrom (ü sinnvoll 1,5...3)

Wahl: ü=2

$$\rightarrow I_B^* = \ddot{u} \cdot I_B = 200 \mu A$$

Vorteile:

- o schnelleres Einschalten
- o weniger Verluste
- o $U_{CE} = U_{CEsat} \rightarrow$ Arbeiten bei Sättigungsgrenze
- 4. $R_{\scriptscriptstyle V}$ festlegen (hierbei wird $U_{\scriptscriptstyle E}$ für den Einschaltfall angenommen)

Es gilt:

$$U_E = U_{RV} + U_{BE} \rightarrow U_{RV} = I_B^* \cdot R_V$$

$$\rightarrow U_E = I_B^* \cdot R_V$$

 $U_{\it BE}$ wird zwischen 0,7V und 0,8V geschätzt, bei Übersteuerung (ü>1) wird $U_{\it BE}=0,8V$ angenommen

$$U_E = 3.5V$$
 sei angenommen $\Rightarrow R_V = \frac{3.5V - 0.8V}{200\mu A} \approx 13.5k\Omega$

 $ightharpoonup P_{tot \max}$ beachten (Leistungshyperbel), nur für wenige Nanosekunden darf dieser Bereich eingenommen bzw. durchlaufen werden

Prüfen/Ergänzen der Auslegung:

- Durchlassen/Schalten: U_{CEsat} muss am Transistor anliegen
- Sperren: Diode wird vor R_{V} geschaltet ightarrow kleine Spannungen werden weiter verringert ightarrow sollte dies nicht reichen, können weitere Dioden ergänzt werden
 - lacktriangle Dazu muss $R_{\scriptscriptstyle V}$ neu ausgelegt werden
- $I_B^* \to \text{Es gibt kein } I_C^* = \beta \cdot I_B^*$