8. Optik des Auges

Motivation:

- 1) Verbesserung optischer Geräte
- 2) Beleuchtung

Erinnerung: → Kap. 2 Farbensehen Ziel: Bionik= Biologie + Technik

8.1 Aufbau des menschlichen Auges

Elemente:

- Hornhaut, $n_H = 1,376$, Hauptbrechung
- Vorderkammer $n_v = 1,336$
- Augapfel (Kugel von 25mm Durchmesser (22...25))
- Linse, bikonvex, transparent, $n_{L(Zentrum)} = 1,41$, $n_{L(Rand)} = 1,38$
- Glaskörper $n_G = 1,336$
- Iris: Öffnung 2-3mm
- blinder Fleck, Nerven zum Gehirn
- Netzhaut mit Lichtsensoren (100 Mio. Stäbchen (Rand),10 Mio. Zäpfchen (Zentrum))

8.2 Funktionen des Auges als optisches Instrument

Analogie: Auge ≈ Kamera mit Objektiv

Brechkraft: via Grenzflächen

(Luft | Hornhaut | Vorderkammer | Linsen | Glaskörper)

Modell von H. von Helmholz

Linsensystem aus Sammellinsen mit g > 2f

(\rightarrow Kap. 5: verkleinertes, auf dem Kopf stehendes, reelles Bild auf der Netzhaut mit b \approx 25mm)

Definition: Deutliche Sehweite $s_0 = 25cm$

Brechweite des Auges:

$$D_{H} = 41dpt \left(Hornhaut\right)$$

$$D_{L} = 20dpt + \left(1, ..., 12dpt\right)$$

$$D \approx 60...79dpt = \frac{1}{f} \rightarrow f \approx 15mm$$

zu D_L :

- erster Teil 20 dpt → rückwärtiger Teil
- zweiter Teil 1-12 dpt → Alter...Jugend, vorderer Linsenteil
- 8.3 Augenfehler und ihre Korrektur

Analog zu Linsen: Achsenferne Strahlen durch unterschiedlich große Augäpfel

8.3.1 Kurzsichtigkeit

Prinzip: Bild entsteht vor der Netzhaut

Abhilfe: Zerstreuungslinsen

8.3.2 Weitsichtigkeit

Prinzip: Bild entsteht hinter der Netzhaut

Abhilfe: Sammellinsen

→ Brillen (Folge von Lesestein (1305) aus "Beryll")

9. Von den Strahlungsgesetzen zur Lichttechnik

Frage nach der Lichterzeugung

1) Wie entsteht Licht auf atomarer Ebene?

$$E_{input} = nf + \Delta E$$
 (nf = Photon mit Frequenz f, $\Delta E = Energieunterschied$)

2) Wie Input Energie aus System?

- mechanische Energie: Temperaturerhöhung (Sonne, Glühbirne)

- Elektronenbeschuss (Röhren-TV)

Elektro-magnetisches Feld (Leuchtstoffröhre, Laser)

- chemische Reaktion (Sonne, Feuer, Glühwürmchen)

Definition: Plasma = ionisiertes Gas (4. Aggregatzustand)

Begriffserläuterung:

- 1) Lichttechnik: Technik von der Anwendung des Lichts (Leuchttechnik = Möglichkeit der Lichterzeugung)
- 2) Beleuchtungstechnik = Verteilung von Lichtstrahlung in geg. Räumen
- 3) Photometrie = Messung des sichtbaren Lichtes

9.1 Physikalische Strahlungsgrößen

9.1.1 Strahlungsenergie, -fluss

Definition:

1. Strahlungsenergie $W_{ph} = h \cdot f$ $h = 6,626 \cdot 10^{-34} J$

Bsp.: 400 - 700nm

$$f = \frac{c}{\lambda} = 8.10^{14} Hz - 4.10^{14} Hz$$

$$\rightarrow W_{ph} = h \cdot f = 5 \cdot 10^{-19} J - 3 \cdot 10^{-19} J$$

2. Strahlungsleistung/-fluss
$$P = \frac{dW}{dt} [Watt]$$

Bsp.: 10 Watt Sparlampe $\rightarrow 3 \cdot 10^{19}$ Photonen rot nötig

3. Energiedichte
$$\omega = \frac{dW}{dv} \left[\frac{J}{m^3} = Pa \right]$$

9.1.2

Jetzt: Frage nach dem Anteil der ausgesendeten Strahlung, die beim Empfänger ankommt (Film, CCD)

Geometrie (Vorläufer Lichttechnik)

Empfänger: Fläche A via Öffnungskegel mit 2σ -Öffnungswinkel

$$\Omega = 4 \cdot \pi \cdot \sin^2\left(\frac{\sigma}{2}\right)$$

Definition: Raumwinkel $\Omega = \frac{A}{R^2} \left[\text{dim} - los, steradiant \right]$

Bsp. Isotoper Empfänger mit $A = 4 \cdot \pi \cdot R^2 \Rightarrow \Omega = 4 \cdot \pi$

Definition:

1) Strahlungsstärke:
$$I_{\Omega} = \frac{dP}{d\Omega} [W / sr]$$

2) Strahlungsdichte:
$$L_{\Omega} = \frac{dI_{\Omega}}{dA} \left[W / sr \cdot m^2 \right]$$

Bemerkung: Abhängigkeit um λ beachten

Definition: Spektrale Strahlungsdichte: $L_{\lambda} = \frac{dL_{\Omega}}{dA}$

Definition:

1) Spez. Ausstrahlung:
$$I = \frac{dP}{dA} \left[\frac{W}{m^2} \right]$$
: zur Quelle

2) Intensität am Empfänger
$$E = \frac{dP}{dA_E}$$
: ankommende Leistung

Anwendung Solarkonstante:

Die auf der Erde empfangbare Strahlung $E = 1395 \frac{W}{m^2}$

Definition: Belichtung $H = T \cdot E \Big[J \ / \ m^2 \Big] \ {\rm bei} \ {\rm Belichtungszeit} \ {\rm T} \ {\rm durch}$ Belichtung mit E

9.1.3 Veranschaulichung, Strahlungsdruck

Ergebnis: Strahlungsdruck $p = \frac{E}{C}$ (vgl. kinetischen Druck $P_{kin} = n \cdot K_B \cdot T$)

PA: Strahlungsdruck der Sinne im Vgl. zum kinetischen Druck

$$P_{\odot} = \frac{E}{c} = \frac{1395 \frac{W}{m^2}}{330.000 \frac{m}{s}} = 4,227 \cdot 10^{-3} Pa \quad (P_{kin} = 4 \cdot 10^{-29} Pa)$$

$$P_{\odot} \gg P_{kin}$$

9.2 Emission + Adsorbtion von thermischer Strahlung, kirchhoffsches Strahlungsgesetz

thermische Strahlung, kontinuierliches Spektrum, nicht thermisches Licht hat in der Regel kein kontinuierliches Spektrum

- 9.2.1 Schwarzer Körper, Absorption + Emission
 - 1) Absorption: Absorptionsgrad $\alpha = 0 1$ gute Absorber sind z.B.:
 - schwarzer, dichter Stoff (Bsp. Molton, Samt)
 - Hohlräume
 - Ruß
 - 2) Reflexion: Reflexionsgrad ρ gute Reflektoren sind z.B.:
 - Seide
 - Alu-Folie
 - Styropor
 - Schnee & Eis
 - polierte Flächen
 - 3) Transmissionsgrad au gute Transmitter sind z.B.:
 - Glas
 - Wasser
 - Gase